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Two variants are examined for optimizing a system with transverse flows and are 
compared for energy efficiency with an ideal cascade. 

It was shown in [I] that, in a thermodiffusion apparatus operating with transverse flows 
(Fig. la and b), the running concentrations in the top channel, where the object component of 
the binary mixture is enriched, are determined from the following formulas in the case of 
direct flow and counterflow, respectively: 

direct flow 

exp (bye) [ 1 exp ( - -  qcp~)] X 

(1) 

;< [exp(bye)-5 x~ ]- I}  a x~ [ I j - l ,  -5 1 - -  exp (--%,~)][exp (bye)-- 1] exp (bye) -5 • 
~e "b ~e ~e 

counter flow 

c~ = co [exp (bye) - -  1 ] exp (%~ -5 exp (%) exp (bye) • 
. • • 

(2) 
• [ e x p ( % + b y ~ )  • 1-1 a x i [ • - -  - -  -5 [exp (bye) -- 1 ] [exp (%~)--  1] exp (% + bye) , 

x e b x. :% _, 

where a and b are coefficients in a linear approximation of the quadratic term of the trans- 
port equation 

c ( 1 - - c ) ~  a -5 be, (3) 

b exp (bye) 5 (•215 b exp (bye) - -  (•215 r = _  ; % = .. 
• exp (bye) - -  1 • exp (bye) - -  1 

and 

Formulated below are the conditions ensuring a minimum of energy expenditure for opera- 
tion with the above schemes. In a plane or nearly plane apparatus,* the heat flow rate on a 
section of length dx (Fig. la) 

dQ = ~ ATLdx = ;L ATBLd~. (3a )  
8 6 

The t o t a l  h e a t  f l o w  r a t e  i n  t h e  a p p a r a t u s  

1 Ceh 

3 Q. = )~ATB d~ = ~,ATB L dc~ 6 dcjd~ (4) 
0 Co 

Introducing the notation (5) 
6~ 

Y~=Y~ ~ ' ~ = •  3, 

*By nearly plane, we mean a cylindrical apparatus in which the ratio of the inside diameter 
of the outer cylinder to the outside diameter of the inner cylinder is less than 1.1. 
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Co i ~  B i 

a \ /  ~ ~ b X 

C O - . ~ C O 

Fig. i. Scheme of apparatus with transverse flows: a, b) direct 
flow and counterflow (i -- channels, 2 -- separation part of ap- 
paratus); r optimized scheme (I, 2 -- supply of initial product, 
3 -- column, 4 -- thermosiphons). 

we obtain the following, instead of (4) 

• (,%k 
Q = ~ , A T B ~  | Ye dG . 

Ze dCe/d~ " 
ca 

We will replace the derivative dCe/d~ in (6) using Eqs. (1) and 

in direct flow 

(2) : 

dce -- Co (1 --  Co) 1 exp (-- rpv~), 
d~ x. 

] [exp(q%+bye) •215 ] -1 '  

in accordance with (3). 

in counter flow 

dc---t-~d~ ~"  Co (1• Co) exp (q%~) [ exp (by,) -- ~_ji~ 

where we have made the substitution a + boo ~ co(l -- co), 

The exponents exp(-~p~) and exp (~0c~) can be expressed by means of (i), (2) 
running concentrations : 

co--Co b• [exp(bye) @ • ] [exp(bye)-- l]-i 
exp (-- q~g) : 1 --  Co (1 --  Co) • • ' 

(6) 

(7) 

(8) 

through the 

(9) 

Substitution of 

c e -  % b• [exp (q~c + bye) • ] [exp (bye)-- 1 ]- '  exp(rp:~) =~ 1 + c o ( l ~ o  ) • • " 

(9) and (10) i n t o  (7) and (8) g ive s :  

for direct flow 

dce co(l--co) (ce--co) b-]exp(bye)+ "x, i [exp(bye) ._l]_  , 
d~ x e ~i Xe ' 

for counter flow 

dce co(l--co)[exp(by~)_ • • - ' +  b (c~--Co)[exp(by,,) • 
d~ X e Xe Xe Xi ~e 

Using (6), (ll), and (12), we obtain: 

• b• Qdke-- %ATB e ye[exp(bye)-- 1] Co(1 --Co)[exp(byo)--l] -- - -  (co--Co) exp(bye) + x~ 
Ye Xi _ Xi 

Co 

C 

Qcoun= kATB ~ j ge exp (q~c + bye) --  -~-  [exp (bye) --  i I • 
Co 

(lO) 

(11) 

] [exp (bye)-- 1] -1 . 

}-- t doe 

(13) 
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X Co (1 - -  Co)[exp (bye) - -  1] ~- 

X [ e x p ( %  + b y e ) - - ~ ] } }  -~ doe. 

b~< e 
(Ce - -  Co) X 

(14) 

Finding the minimums of the functionals (13) and (14) is the condition ensuring a minimum of 
energy expenditures. We will henceforth examine the case when =he rate of pumping through 
the lower channel is so great that the concentration in this channel may be considered every- 
where constant and equal to Co. This will occur when ~i § ~. Here, the difference between 
the direct flow and counterflow disappears and, instead of (13), (14), we will have 

* i eh Q = >..ATB @ 
Y; 

Co 

Ye [exp (bye) -- 1 ] dee 

Co (1 - -  Co) [exp (bye) - -  I] - -  b (ee - -  Co) " 
(15) 

Composing the Euler equations, we find that the minimum of the functional (15) will be reached 
when 

. ce -- co [exp (bye) -- 1] z 

Co (1 - -  Co) - -  b [bye exp (bye) -1- exp (bye) - -  1 ] (16 )  

Substituting (16) into (15), we obtain the expression 

)~ATB z ~ j~k "e 1 
Q -  c o ( l _ c o )  y .  ~ -  (bye + l - - e x p ( - - b Y e ) ) d c e ,  

Co 

which may rewritten as follows: 

Q = 

YeJ~ 
�9 j dee - (17) ),,ATB zf ' 1 (bye q- 1 -- exp (-- byel) ~ dye 

co (I -- ~o1 yf 7 -  
0 

We find the derivative dce/dy e from (16) 

Then instead of (17) 

dc e 
dye c o (1 -- Co) bye 

exp (bye) -- exp (-- bye) 

[bye + 1 - -  exp (--bye)] z 
(17a )  

•  ~ca exp (bye) - -  exp ( - -  bye) dye = Z A T B  - -  , 
Y~ bye + 1 -- exp (-- bye) y~  

0 

(18) 

where the integral on the left side has been denoted by ~. 

*/ * In accordance with (5) and with allowance for the notation adopted, the ratio • Ye takes 
the form 

and instead of (18) we obtain 

• 10 %T--Z 

u* 7 a29D (AT)2B ~ e  

Q 10 %~2r (19) 
Q u a - -  % -- 7 ~ 2 p D A T  

We will examine three cases representative of those cases of the greatest practical in- 
terest. 

i. The concentration of the object is everywhere low, i.e., e << I. In the approximation 
(3), this corresponds to a = 0, b = 1. Con$idering that Ce/Co = q -- the degree of separation -- 
we obtain the following expression from (16) 

Y e -  I -+- exp (be) 
q = , ( 2 0 )  

b%@ 1 - -  exp ( - -  y,,) 

629 



establishing the relationship between q and the variable Ye' At the outlet of the apparatus, 

Ye = Yek and q = qk' 

Since qk is prescribed by the conditions of the separation problem, then, in accordance 
with (20), we use it to determine Yek. Values of Yek are shown in Table 1. Having thus deter- 
mined Yek' we thereby find the upper limit of the integral in (18), which takes the form 

~i --  2 y~ sh Ye dye. (21)  
. y~ + 1 - -  exp ( - -  y~) 
0 

Values of this integral are shown in Table i. When Yek > 4, we obtain the approximation 

~i ~ eueh - -  1 - -  0.368 [El* (Yeh + 1) - -  1.895], 

where El* is a modified integral exponential function. 

2. Both components are present in comparable concentrations, i.e., 0.3 < c < 0.7. In 
the approximation (3), this corresponds to b = 0. Then instead of (16) 

Y e = 2  c~--co  , (22)  
Co (1 - -  Co) 

and the integral in (18) takes the form 

j ue~ 1 2 
*o = YedYe = - ~  Yek" 

0 

Substituting for Yek, in accordance with (22) we obtain 

,0=2 [ ce~-c0 ]2 
Co (1 - -  Co) J (23 )  

3. The c o n c e n t r a t i o n  o f  t h e  o b j e c t  c o m p o n e n t  i s  e v e r y w h e r e  c l o s e  t o  u n i t y ,  i . e . ,  1 -  
c << i. In the approximation (3), this corresponds to a = i, b =--i. 

Considering that the degree of separation q = (i -- co)/(l -- ee), we again obtain Eq. (20) 
from (16), and the integral in (18) takes the form 

j.Yeh Ye sh Ye 
q~-I = 2 

exp(y~) + Ye- -  1 dye.  (24)  
0 

The approximate expression is as follows when Yek > 4: 

~ + exp (--yek) 1 + 2 
Y~h 

Values of this integral are shown in Table i. Now we can compare each of the above-examined 
variants with the ideal cascade with regard to energy efficiency. 

It is known that the following is valid for an ideal cascade in which the initial con- 
centration is maintained in the zero section: 

Qid 40 ~.~z V (Cet~, CO) (2.5) 
un = 7 r 

where the value function has the following form in the cases examined: 

b = 1 : V (c~h, Co) .~ qh - -  1 - -  In qh, 

l [ Ceh--Co ] 2 
b = O : V ( c e u ,  Co)~ T c o ( l - - c o )  ' (26)  

1 
b = - -  1 : V (ceh, Co) ,~ lnqh ,-}- - -  1. 

q~ 

We will define the relative efficiency as the ratio of the unit energy expenditures de- 
termined from Eqs. (25) and (19): 
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TABLE i. Values of Dimensionless Height in the Outlet Section 
of a Thermodiffusion Unit with Transverse Flows, the Integrals 
of (21) and (24), and Energy Efficiency According to (27) and 
(46) in Relation to Degree of Separation 

% 

2 
5 

10 
15 
20 
50 

100 
150 
200 
500 

Ye?~ 

1,35 
2,84 
3,81 
4,34 
4,7i 
5,82 
6,63 
7,10 
7,43 
8,47 

F 

1,281 
10,66 
32,52 
58,04 
86,32 

277,50 
611,40 
1039,0 
1457,0 
4209,0 

r 

0,816 
3,544 
6,5i9 
8,571 

10,180 
15,900 
20,990 
23,095 
25,480 
34,070 

0,958 
0,897 
0,824 
0,778 
0,741 
0,650 
0,589 
0,554 
0,532 
0,468 

r P  1 

0,965 
0,914 
0,861 
0,828 
O, 803 
0,738 
0,700 
0,675 
0,655 
0,612 

(Ye/Xe)opt 

b--I  b =  --1 

1,497 O, 984 
12,17 4,47 
36,28 8,34 
63,97 11,05 
93,.93 13,16 

2 9 7 , 2  20,96 
681,6 27,90 
1096 32,40 
1529 35,79 
4354 47,56 

0,816 
O, 784 
0,736 
0,704 
0,682 
O, 607 
0,552 
0,524 
0,508 
0,452 

q::g 
--1 

O, 785 
0,724 
0,673 
O, 542 
0,622 
O, 550 
0,518 
O, 498 
0,481 
0,439 

td 
Qun - 4 

cP-- Qun 

Then for each of the cases examined: 

V G., co) 

2 [ Ce ~ --~ Co �9 2 
4 ( q . - - I - - l n q k ) ;  % - -'~ = 1, 

~ -  ~ % [ co (l -- co) ] 

4 ( ! n q h +  1 1) .  
q ) - I -  ~ - 1  qk , 

(27) 

(28) 

It should be pointed out that in the second case, i.e., when the product c(l -- c) is 
roughly constant, the efficiency of the optimized scheme with transverse flows is the same 
as that of the ideal cascade. 

When c << i, then, having used the first equation of (28) and the data in Table 1p we 
obtain the relation shown in Fig. 2 (curve 4). If (i -- c) << i, then the third equation of 
(28) and Table 1 yield curve 5 in Fig. 2. It is apparent from the latter that, up to q = 20, 
in the second case the energy efficiency may be 80% greater than the efficiency of the ideal 
cascade. Thus, in removing impurities from substances, use of a scheme with transverse flows 
of the product is optimal. The advantages of this scheme are particularly evident in separa- 
ting mixtures in which c(l -- c) = const, where ~0 = 1. 

Let us establish the relationship between the dimensionless coordinate and the geometric 
characteristics of the apparatus. In the case we are examining, • § ~. Thus, instead of 
(ii) and (12), we obtain 

dc~ __ 1 {c o (1-- Co) - -  b (G-- Co) [exp (bye) - -  1] -1}, 
d~ z~ 

from which 

exp (b.G) - -  1 dee = • exp (bye) - -  I d e e  
d ~ = x  e co O - -  co) [exp (bYe) - -  l] - -  b (G - -  Co) c o ( l - - c o )  e x p ( b Y e ) - - l - - b  G - - c ~  dg~ dy%(29)  

co (1 - -  co) 
Allowing for (16) and (17a), we find 

d~ = 2• e sh (bye) dye. (30)  
by e -+- 1 -- exp (-- bye) 

Equation (30) can be integrated in two variants: a) with the apparatus having a constant 
gap and variable height; b) with the apparatus having a variable gap and constant height. 

In the first variant, x e = const and instead of (30) 

~ = 2• e sh (by.) dye ~ • (31 )  
by~ + 1 - -  exp ( - -  bye) 

0 

where I is double the value of the integral on the right side. 
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o,s~, e ~ ~nf 

Fig. 2. Efficiency of optimized ~pparatus relative 
to ideal cascade as a function of the logarithm of 
the degree of separation: l) ~*~; 2) ~-*i; 3) ~*:; 4) 
%; 5) ,_t; 6) r 

The value of I with b = 1 and b = --i is shown in Table 2. With Ye > 4, 

I~ ~ 0.368[Ei*(y~ + 1) - -1 .895] .  

When b = O, I : Ye and 

or, allowing for the notation 

= zoY~ (32)  

L --  x g293~z67 (AT)Z , (33)  
% 9! ~ZD 

i.e., the height of the apparatus is a linear function of the longitudinal coordinate. 

If the concentration at the outlet of the apparatus Cek is specified, then we can use it 
to determine Yak in accordance with (22) and, since ~ : 1 in this case, allowing for (32), 
we have 

On the other hand, 

1 Co ( 1 - -  Co) 

V ~  2 (c~h - -  Co) 
( 3 4 )  

and, using (34), 

x~ -- H ~gpZ~36 a (AT) z B 

B = 1440 % t i t  ce~ -- co ,. (35)  
o~gpZf~83 (AT) z co (I -- co) 

The value of the gap should be assigned. For example, in fraetionating petroleum oils, it is 
necessary to take ~ ~ 0.5-0.6 ram. When b -- 1 and b : --1, we may obtain 

B = 6! %~17"Ih 
~xpZgf~63 (AT) 2 ' 

where llk and l_ik are taken from Table 2. 

In examining variant b), i.e., with L = const and >~e being variable, it should be kept 
in mind that, from (5) 

u 3 / 4  
~e  ~ 3 /4  ~e ' (Ly*) 

and, instead of (30), (31) 

Y~ ":  (36) 2~e* j '  ge 3/4 sh (bye) dy~ 

~ - -  (Lg?)a/4 o " ' "  by~ + 1 - -  exp (--bu~) = (Ly , )3 /4  . I*, 
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TABLE 2. Values of the Integrals I and I* in Rela- 
tion tO the Running Dimensionless Height of the Ap- 
paratus 

,j~ 1, ~ ,  f f  I* I 

0 
0,2 
0,4 
0,6 
0,8 
1,0 
1,2 
1,4 
1,6 
1,8 
2,0 
2,2 
2,4 
2,6 
2,8 
3,0 
3,2 
3,4 
3,6 
3,8 
4,0 
4,2 

0 
0,2054 
0,4233 
0,6567 
0,9090 
1,1842 
1,~872 
1,8231 
2,1980 
2,6194 
3,0959 
3,6376 
4,2565 
4,9665 
5,7843 
6,7297 
7,8257 
9,0999 

10,5851 
12,3200 
t4,3508 

0 
0,1954 
0,3829 
0,5651 
0,7422 
0,9162 
1,0884 
1,2596 
1,4906 
1,6220 
1,8343 
2,0079 
2,1830 
2,3598 
2,5384 
2,7189 
2,9012 
3,0852 
3,2709 
3,4582 
3,6470 

0 
0,0340 
0,1222 
0,2612 
0,4546 
0,7811 
1,1073 
1,5172 
1,6167 
2,2455 
3,0184 
3,9655 
5,1237 
6,5383 
8,2643 
10,369 
12,934 
16,059 
19,865 
24,501 
30,I45 
37,016 

0 
0,0317 
O, 1098 
0,2174 
0,3527 
0,5134 
0,6982 
0,9066 
1,t383 
1,3935 
1,6724 
1,9753 
2,3025 
2,6542 
2,9906 
3,3518 
3,7778 
4,2286 
4,7040 
5,2038 
5,7278 
6,2757 

where I* is double the 
in Table 2. 

When b = O, I~ = 
notation 

value of the integral on the left side, corrected for b = 1 and b = --i 

(4/7)y~/4, and we obtain the following from ( 3 6 ) ,  allowing for the 

4 ~z # 177/4 = 4 9! G~IZDL 
7 (Lye) 3/4 ~e "7 p3gz[~z (AT)2 57B (37) 

In the outlet section of the apparatus, i.e., when ~ = i, ~ = ~k, and from (37) we obtain 

4 edl2Di 
B =  9l 

7 p3g=[~= (AT)= 6~ 

Equations (37) and (38) yield 

(38) 

6 ~j-II7 (39) 
G 

Since when $ = 1 the concentration is a set quantity, according to (22) 

Yek = 2 G~--Co or " 64 = 252 ~ Co(1 - -Co)  ( 4 0 )  
Co (1 - -  co) pg~Y c~ - -  co 

Substitution of (40) into (38) gives 

(AT) 2 \ ~z / - ~  p-5/4 (DL) -3!4 co(l --co) " (41) 

Similarly, for the cases b = 1 and b = --i, we find 

(.) B = 6 , 7 6 9  (AT) ~ 9 -a /4  (DL)-al  4 , ( 4 2 )  

where I k is taken from Table 2. Knowing Yek, we use the data in Table 1 to find 

8~ - 504 aNDt_ (43) 
9 g[~ T yek 

Thus, Eqs. (36) and (40)-(43) make it possible to calculate the geometric characteristics 
of the apparatus if its productivity and height and the degree of enrichment are specified. 

Analysis of the above results and Eq. (36) in particular shows that optimization by 
variant b) is characterized by only a slight change in the gap size over a long section of 
the apparatus length (~ > 0.i). Considering the difficulties of making a unit out of elements 
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with gap sizes differing altogether by hundredths of a millimeter, such a variant could hardly 
be recommended. Variant a), depicted in Fig. lc, is more expedient. Here, the cascade con- 
sists of identical elements of small height with even gaps, 

In conclusion, we will present yet one more method of optimization, based on examination 
of the formula 

10 ~ T z .y~ 
* -- -- (44) Qun- 7 ~z2P DAT ~e ' 

obtained from (3a) after transformations. It is assumed in this formula that L = const and 
= const over the entire length of the unit. 

As before, limiting ourselves to the case ~i + ", we obtain the following expressions 
for ~e from (I) or (2): 

b-~ l : •  [1 q--1 ]}-I 
exp (g~) -- I 

b = O : ~ = - -  y~tn i c~k--co (45) 
~'~co (1 -- co) 

b = - - l : •  [1-- q--I ]}-I 
q (1 -- exp (-- y~)) ' 

Substituting these expressions into (44) and equating the derivative dQ*un/dY e to zero, we 
find the values of Yetop t at which Qu*n will have a minimum value. Then having determined 
(ye/>,e)opt, we can calculate the efficiency of the thus-optimized apparatus compared to the 
ideal cascade. Using (g6), by analogy with (27) we obtain 

, id 9~ 

Values of (i~ and ~*~ are shown in Table i. For the case b = 0, throughout the entire , 
range of Cek- co permissible for the given approximation ~o remains roughly constant, equal 
to 0,814. 

It is apparent from Fig. 2, which also shows the dependence of ~* on log q, that ~ > ~* 
and~ thus, the method of optimization based on (44) has no disadvantages except for the case 
c << 1 with q > 50, when ~ is not much larger than T* (curves 2 and 4). This is because the 
reduction in energy efficiency in this case is compensated for by the simpler design of the 
apparatus. 

NOTATION 

c, mass concentration; ~ = x/B; x, longitudinal coordinate; B, total length of apparatus; 
Ye = 504e~DL/ggB~; ~, thermal diffusion constant; ~, D, 8, dynamic viscosity, diffusion co, 
efficient, and coefficient of cubical expansion; L, height of apparatus; p, density; 6, depth 
of gap; T, mean temperature in gap; • = ~/H; ~, productivity of apparatus (extraction); H = 
u02gS~3(AT)2B/n~; AT, difference in temperatures between hot and cold surfaces; Q, heat flow 
rate; l, thermal conductivity; q, degree of separation; Indices: e, i, enriched and depleted 
products; k, value at apparatus outlet. 

i. 

2. 
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