OPTIMIZATION OF A THERMODIFFUSION APPARATUS WITH TRANSVERSE
FLOWS

G. D. Rabinovich and A. V. Suvorov UDC 621.039.3

Two variants are examined for optimizing a system with transverse flows and are
compared for energy efficiency with an ideal cascade.

It was shown in [1] that, in a thermodiffusion apparatus operating with transverse flows
(Fig. la and b), the running concentrations in the top channel, where the object component of
the binary mixture is enriched, are determined from the following formulas in the case of
direct flow and counterflow, respectively:
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where ¢ and b are coefficients in a linear approximation of the quadratic term of the trans-
port equation
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Formulated below are the conditions ensuring a minimum of energy expenditure for opera-
tion with the above schemes. In a plane or nearly plane apparatus,® the heat flow rate on a
section of length dx (Fig. la)

dQ — %_ ATLdx = -—g— ATBLAE . (3a)
The total heat flow rate in the apparatus
1 Cen
Q =AATB§—§—d§=MTBS %'TZ%E_' )
9 %
Introducing the notation 5 (3)
¥, =Y. 7 %, = %,0%,

*By nearly plane, we mean a cylindrical apparatus in which the ratio of the inside diameter
of the outer cylinder to the outside diameter of the inner cylinder is less than 1l.1.
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Fig. 1. Scheme of apparatus with transverse flows: a, b) direct
flow and counterflow (1 — channels, 2 — separation part of ap-
paratus); c) optimized scheme (1, 2 — supply of initial product,
3 — column, 4 — thermosiphons).

we obtain the following, instead of (4)
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We will replace the derivative decg/df in (6) using Eqs. (1) and (2):
in direct flow

de,

T =g (1 —¢o) exp (— @), (7)
dE e
in counter flow
. 2 —1
dee _ (=0 oxp(0) [exp(bye)— a ] [exp(wrbye)— al ] , (8)
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where we have made the substitution g + beo * co(l — cp), in accordance with (3).

The exponents exPC-wpg) and exp (Yo%) can be expressed by means of (1), (2) through the
running concentrations:
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Substitution of (9) and (10) into (7) and (8) gives:

for direct flow
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for counter flow
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Using (6), (11), and (12), we obtain:
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Finding the minimums of the functionals (13) and (14) is the condition ensuring a minimum of
energy expenditures. We will henceforth examine the case when the rate of pumping through
the lower channel is so great that the concentration in this channel may be considered every-
where constant and equal to co. This will occur whennj + ». Here, the difference between
the direct flow and counterflow disappears and, instead of (13), (14), we will have

4
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Composing the Euler equations, we find that the minimum of the functional (15) will be reached
when

L Ce—Co [exp (bye) — 11* (16)
Co (1 - CO) b [bye eXp (bye) "{_ eXP (bye) - 1]
Substituting (16) into (15), we obtain the expression
arB  wr (M
A 'e“ ) - .
Q == CO(I _'CO) y;k 5 7 (bye e I exp( bya)) dce1
which may rewritten as follows:
IATB o (T d an
5 % Ce
0= j & (bt 1 exp (b)) ey,
We find the derivative dece/dye from (16)
dce — CO(I*CO) bye exp (byE)_eXp (_ bye) . (l?a)
dife ‘ [0Ye 4 1 — exp (—by,)I?
Then instead of (17)
i M exp (by) — exp (— by, "
_aarB D) g (18)
Q=2aT y¥ 5 ¢ bye+ 1—exp(— by Aye = MATE y¥ v

where the integral on the left side has been denoted by y.

In accordance with (5) and with allowance for the notation adopted, the ratio x:/yg takes
the form-

x* 10 0,72
y* 7 aD(ATRB
and instead of (18) we obtain
0 =@ _10 Py (19)
wm— g, 7 a2pDAT

We will examine three cases representative of those cases of the greatest practical in-
terest.

1. The concentration of the object is everywhere low, i.e., ¢ << 1, In the approximation
(3), this corresponds to a = 0, b = 1, Considering that’ce/co = q — the degree of separation —
we obtain the following expression from (16)

g = Yo— 1+ exp (4.) , (20)
Yo+ 1 —exp(—y.)
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establishing the relationship between q and the variable yo. At the outlet of the apparatus,
Ye = Yek and q = qg.
Since q, is prescribed by the conditions of the separation problem, then, in accordance

with (20), we use it to determine ygk. Values of yek are shown in Table 1. Having thus deter~
mined yg ., We thereby find the upper limit of the integral in (18), which takes the form

Yep

n 4,shy, (21)
by = 2.( Yo+ 1 —exp(—y.) Abe-

Values of this integral are shown in Table 1. When yg)x > 4, we obtain the approximation
1 = e¥er — 1 — 0,368 [Ei* (y,5 + 1) — 1.895],
where Ei* is a modified integral expomential functionm.

2. Both components are present in comparable concentrations, i.e., 0.3 < ¢ < 0.7, In
the approximation (3), this corresponds to b = Q. Then instead of (16)

Ce—Cp
S @
and the integral in (18) takes the form
Yer,
%:j yedye=—;— Yoy -
0
Substituting for yek, in accordance with (22) we obtain
Cop—Co |2
11}0:2[00(1—“0(;)] - (23)
3. The concentration of the object component is everywhere close to unity, i.e., 1 —
¢ << 1. In the approximation (3), this corresponds to a =1, b = —l,

Considering that the degree of separation q = (1 — ¢co)/(1 — cg), we again obtain Eq. (20)
from (16), and the integral in (18) takes the form

{Jeh

Yeshy,
Y, =2 J ¢ dy, . (24)
) T a1 Y

The approximate expression is as follows when ygi > 4:
1 2
Vb, =4 [——JreXp(—yeh)(lJr )}——2.
2 Yen

Values of this integral are shown in Table 1. Now we can compare each of the above-examined
variants with the ideal cascade with regard to energy efficiency.

It is known that the following is valid for an ideal cascade in which the initial con-
centration is maintained in the zero section:
PR Y (25)
Qun T a?pDAT VGt )

where the value function has the following form in the cases examined:

bZI:V(Cek» Cg)%qk——l—ll‘lqh,

1 Con—Co |?
b=0:V(cu ) ® — | —=——7-] ,
| (Cers o) 5 [ co(l—co) ‘! (26)
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We will define the relative efficiency as the ratio of the unit energy expenditures de-
termined from Eqs. (25) and (19):
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TABLE 1. Values of Dimensionless Height in the Outlet Section
of a Thermodiffusion Unit with Transverse Flows, the Integrals
of (21) and (24), and Energy Efficlency According to (27) and

(46) in Relation to Degree of Separation

(Fel%e)ont " %
I | Yer P Yoy @1 % : P @] ¢
b=1 | b= —1
2 11,35 1,281 0,816 | 0,958 0,965 1,497 0,984 | 0,816] 0,785
512,84 10,66 3,544 0,897 0,914 12,17 4,47 0,7841 0,724
10 | 3,81 32,52 6,519 0,824 0,861 36,28 8,34 0,736 0,673
15 | 4,34 58,04 8,571 0,778 0,828 63,97 11,05 0,704 | 0,642
20 | 4,71 86,32 10,180 0,741 0,803 93,93 13,16 0,682 0,6%2
50 | 5,82 | 277,50 15,900 0,650 0,738 297 ,2 20,96 0,607 0,560
100 | 6,63 611,40 20,990 0,589 0,700 681,6 27,90 0,552} 0,518
150 | 7,10 | 1039,0 23,095 0,554 0,675 1096 32,40 0,524 0,496
200 | 7,43 | 1457,0 25,480 0,532 0,655 1529 35,79 0,508 0,481
500 | 8,47 | 4209,0 34,070 0,468 0,612 4354 47,56 0,452 0,439
- Qxlli _ V(Celn CO)
"=Qm Ty (27)
Then for each of the cases examined:
2 Cop, — C 12
Bm —— (G 1 —Ingy); = [ Ll NN
1 Yo | Co(l—cq) J

(28)

1 AN
P, = (lnq;ﬂr ~1)_

—1 n

It should be pointed out that in the second case, i.e., when the product c(l — ¢) is

roughly constant, the efficiency of the optimized scheme with transverse flows is the same
as that of the ideal cascade.

When ¢ << 1, then, having used the first equation of (28) and the data in Table 1, we
obtain the relation shown in Fig. 2 (curve 4). If (1 — ¢) << 1, then the third equation of
(28) and Table 1 yield curve 5 in Fig. 2. It is apparent from the latter that, up to q = 20,
in the second case the energy efficiency may be 80% greater than the efficiency of the ideal
cascade. Thus, in removing impurities from substances, use of a scheme with transverse flows

of the product is optimal. The advantages of this scheme are particularly evident in separa-
ting mixtures in which ¢(1 — ¢) = const, where ¢ = 1.

Let us establish the relationship between the dimensionless coordinate and the geometric

characteristics of the apparatus. In the case we are examining, %; =+ »=. Thus, instead of
(11) and (12), we obtain

d 1 _
e _ {eo (1— o) — b (c,— ¢g) [exp (by,) — 1] 1,
dg 7,
from which
dg =, €xp (bye) — 1 dCe — o €Xp (bye) — i Ce dye (29)
co (1 —co)fexp (by,) — 11— b (¢, — ¢p) o (1 —cy) by)—1—b Ce — Cp dy, .
exp (by, i oy
Q — ~)
Allowing for (16) and (17a), we find
dE = 2, sh (by.) dy, . (30)

by, + 1 — exp (— by.)

Equation (30) can be integrated in two variants: a) with the apparatus having a constant
gap and variable height; b) with the apparatus having a varlable gap and comstant height.

In the first variant, %, = const and instead of (30)

Ye
£ = 2x, h (bg.) dy, =1, XY
5 bye + l1— eXP (_ bye)

where I is double the value of the integral on the right side.
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Fig. 2. Efficiency of optimized apparatus relative
to ideal cascade as a function of the logarithm of
the degree of separation: 1) (pf; 2) cpfl; 3) cp’;; 4)
P13 5) w3 6) wo.

The value of I withb =1 and b = =1 is shown in Table 2. With y, > 4,
Iy ~ 0,368 [Ei* (y, + 1) — 1.895].

Whenb =0, I =y, and

=%, (32)
or, allowing for the notation
X g%p%p287 (AT)?
o, 9 2D
i.e., the height of the apparatus is a linear function of the longitudinal coordinate,

L= ) : (33)

If the concentration at the outlet of the apparatus cegk 1s specified, then we can use it
to determine ygy in accordance with (22) and, since & = 1 in this case, allowing for (32),
we have

%e: 1 _ CO(I—CO) ] (34)
Yeti 2 (¢ — Co)
On the other hand,
" — O, = 6! O'BT]T
€ H agp*pd® (AT B
and, using (34),
B = 1440 onT o 7 €0 (35)

agoB6 BT ol —co)

The value of the gap should be assigned. For example, in fractionating petroleum oils, it is
necessary to take § * 0,5-0.6 mm. When b = 1 and b = —1, we may obtain

Uen—T] R
ap?gPd® (AT

where I,k and I.,x are taken from Table 2,

In examining variant b), i.e., with L = const and n, being variable, it should be kept
in mind that, from (5)

*

e
— y63/4’

®, =
Lyt
and, instead of (30), (31)

Yo

2n¥ j y3/%sh (by,) dy, B u* . 36)
- (Lyx** ) by + 1 —exp(—by) T @
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TABLE 2. Values of the Integrals I and I® in Rela-
tion to the Running Dimensionless Height of the Ap-

paratus
A N . Iy I¥ *,
0 0 0 0 4]
0,2 0,2054 0,1954 0,0340 0,0317
0,4 0,4233 0,3829 0,1222 0,1098
0,6 0,6567 0,5651 0,2612 0,2174
0,8 0,9090 0,7422 0,4546 0,3527
1,0 1,1842 0,9162 0,7811 0,5134
1,2 1,4872 1,0884 1,1073 0,6982
1,4 1,8231 1,2596 1,5172 0,9066
1,6 2,1980 1,4906 1,6167 1,1383
1,8 2,6194 1,6220 2,2455 1,3935
2,0 3,0959 1,8343 3,0184 1,6724
2,2 3,6376 2,0079 3,9655 1,9753
2,4 4,2565 2,1830 5,1237 2,3025
2.6 41,9665 2,3598 6,5383 26542
2,8 5,7843 2,5384 8,2643 29906
3,0 6,7297 2,7189 10,369 3,3518
3.2 78957 29012 12,934 3.7778
3,4 9,0999 3,0852 16,059 4,2286
3,6 10,5851 3,2709 19,865 4,7040
3,8 12,3200 3,4582 24,501 5,2038
4,0 14,3508 3,6470 30, 145 5,7278
4,2 37,016 6,2757
where I* is double the value of the integral on the left side, corrected for b = 1 and b = —1

in Table 2,

When b = 0, Tp = (4/7)yé/“. and we obtain the following from (36), allowing for the
notation

4 ®¥ e 4 o,2DL
g:—‘w— e T = 3 1202 2 &7 ’ (37)
7 (Lyl) 7 p°g?* (AT &8

In the outlet section of the apparatus, i.e., when £ = 1, § = &y, and from (37) we obtain

4 o,q2DL

= — ! SRR T A e . 38
B=a % weraryy 38
Equations (37) and (38) yield
6 _I/7 “
= . (39)
O :
Since when & = 1 the concentration is a set quantity, according to (22)
=2 —B "0 o gt o50 DL G(l—a) (40)
co (1 —¢) oghT Ceh — Cp
Substitution of (40) into (38) gives
c :1"_)7[4 / i )1/4 574 —3/4[ Cet — Cg 7/4
= S . —5/4 (DL —_— . 41
B0 i () () oeron” ol —e) ()
Similarly, for the cases b = 1 and b = -1, we find
olf | T 7/4 , \1/4 A
where Iﬁ is taken from Table 2. Knowing ygi, we use the data in Table 1 to find
8 = 504 _ DL (43)
OgRT Yen

Thus, Eqs. (36) and (40)-(43) make it possible to calculate the geometric characteristics
of the apparatus if its productivity and height and the degree of enrichment are specified.

Analysis of the above results and Eq. (36) in particular shows that optimization by
variant b) is characterized by only a slight change in the gap size over a long section of
the apparatus length (£ > 0.1). Considering the difficulties of making a unit out of elements

633



with gap sizes differing altogether by hundredths of a millimeter, such a variant could hardly
be recommended. Variant a), depicted in Fig. le¢, is more expedient. Here, the cascade con-
sists of identical elements of small height with even gaps.

In conclusion, we will present yet one more method of optimization, based on examination
of the formula
10 ATZ y
E J— Je
Q=7 a2pDAT ~ xn, (44)

obtained from (3a) after transformations. It is assumed in this formula that L = const and
§ = const over the entire length of the unit.

As before, limiting ourselves to the case x4y + «, we obtain the following expressions
for g from (1) or (2):

b:l:xez—{[exp(ye)—l]ln [1__1:1__]}‘1,

exp(ye)_l
b=0iu, —— |yl 1_M'}“
e - 42
b:—l:uez—{[l—exp(——ye)]ln[lw 91 “_1,
g (1 —exp(— 4.))

Substituting these expressions into (44) and equating the derivative dQﬁn/dye to zero, we
find the values of ye, opt at which Qﬁn will have a minimum value. Then having determined
(ye/»e)opts we can calculate the efficiency of the thus-optimized apparatus compared to the
ideal cascade, Using (26), by analogy with (27) we obtain

id Ye
v Q= e [ (2 (46)

Values of wf and 9*, are shown in Table 1. For the case b = 0, throughout the entire
range of cgk — co permissible for the given approximation @f remains roughly constant, equal
to 0.814.

It is apparent from Fig. 2, which alsc shows the dependence of ¢* on log q, that ¢ > ¢¥
and, thus, the method of optimization based on (44) has no disadvantages except for the case
¢ << 1 with q > 50, when ¢ is not much larger than ¢* (curves 2 and 4). This is because the
reduction in energy efficiency in this case is compensated for by the simpler design of the
apparatus.

NOTATION

¢, mass concentration; & = x/B; %, longitudinal coordinate; B, total length of apparatusj
Ya = 504anDL/prS“T; o, thermal diffusion constant; n, D, 8, dynamic viscosity, diffusion co-
efficient, and coefficient of cubical expansion; L, height of apparatus; p, density; &, depth
of gap; T, mean_temperature in gap; x = o/H; 0, productivity of apparatus (extraction); H =
op?gB8 7 (AT)*B/nT; AT, difference in temperatures between hot and cold surfaces; Q, heat flow
rate; A, thermal conductivity; q, degree of separation; Indices: e, i, enriched and depleted
products; k, value at apparatus outlet.
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